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Novel Biomarkers for the diagnosis of diabetic nephropathy  
 

 

Abstract  

Diabetes mellitus and its complications are a known public health problem nowadays. 

Diabetic nephropathy is one of the main complications and the result of multiple 

mechanisms, including: activation of the renin-angiotensin-aldosterone system, 

formation of advanced glycation end products and chronic inflammation that led to 

glomerular and tubulo-interstitial damage producing mesangial expansion and 

glomerulosclerosis, which finally results in chronic kidney disease. Early detection of 

diabetic nephropathy is essential for adequate intervention to stop, or at least slow down 

its progression. Multiple markers have been described, not only the classic ones such as 

serum creatinine, urea, and albuminuria, but at this point also novel biomarkers such as 

neutrophil gelatinase-associated lipocalin, tumor necrosis factor 1 receptor and 

monocyte chemoattractant protein-1, among others. The aim of this article was to 

provide an update review of the role of biomarkers in the diagnosis of diabetic 

nephropathy. 

Keywords: Biomarkers, Diabetic nephropathy, Diabetic kidney disease, Diagnosis, 

Quality of life. 
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Diabetes mellitus (DM) has been a chronic disease with an increasing prevalence in 

recent years (1). Currently, according to the International Diabetes Federation, over 537 

million people have DM (1, 2). It is considered a serious public health problem because 

of its impact on quality of life and associated health costs (3). Among its chronic 

complications, one of the most frequent is diabetic nephropathy (DN), which is 

associated with significant morbidity and mortality, and is the leading cause of end-

stage renal disease (ESRD) (4, 5). DN is characterized by abnormal albumin excretion 

in the urine with or without a reduced glomerular filtration rate (GFR) (6). This occurs 

in 20-40% of patients with DM (7). Between 23 and 36% of type 1 DM (T1D) patients 

will develop albuminuria, a situation that also occurs in around 38% of those with type 

2 DM (T2D) (8). 

The main modifiable risk factors are increased urine albumin excretion, (6) 

hyperglycemia, high blood pressure, dyslipidemia, obesity, and smoking (6, 9). The 

non-modifiable risk factors are advanced age, female gender, and the duration of DM 

(9).  

DN in its early diagnosis and timely intervention in diabetic patients are important 

to slow down the progression of renal function decline and prevent ESRD (10). 

The aim of this narrative review was to update the usefulness of serum and urinary 

biomarkers in the diagnosis of DN, and its clinical relevance is to improve the 

management of DN and to limit its impact on the morbimortality which will result in 

maintaining a better quality of life for the patient and lower health system costs for this 

chronic disease.  

https://caspjim.com/article-1-3609-en.html
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Methods 

Search strategy: MEDLINE and EMBASES electronic 

databases were searched for completed studies of any 

design except case reports, case series, letters to the editor 

and conference proceedings, from database inception 

between 2005 and 2022. The Medical Subject Heading 

(MeSH) used were "diabetic kidney disease" or “diabetic 

nephropathy”, and “biomarkers”. 

Inclusion and exclusion criteria: Inclusion criteria were 

studies published in English involving patients of any age. 

Systematic reviews, clinical trials, prospective cohort 

studies, cross-sectional and retrospective studies, and narrative 

reviews related to the objective of this manuscript were 

included. The investigation was limited to articles related to 

human beings, so exclusion criteria was non-human studies. 

Screening: A total of 6660 citations were identified; 658 

duplicates were removed; 6002 titles and abstracts were 

screened against eligibility criteria. No information 

produced outside of traditional publishing and literature 

distribution channels was included. 5890 titles were 

excluded at the title and abstract screen, 98 eligible full-text 

papers met the inclusion criteria. This process is 

summarized in figure 1. 

Data extraction and synthesis: Results from the included 

papers were extracted to a table about pathophysiology, 

diagnosis, traditional and novel biomarkers. 

Quality assessment: The quality of this narrative review 

was evaluated using the SANRA scale, obtaining 12 points 

(11).

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of narrative review process 

 

 

 

Results 

Pathophysiology of diabetic nephropathy: 

Hyperglycemia is currently recognized as the initial 

mediator of metabolic and hemodynamic alterations in the 

kidney, associated with other pathophysiological events, 

(12, 13) summarized in figure 2, and as follows:  

Hemodynamic alterations: Activation of the renin-

angiotensin system (RAS) increases the level of angiotensin 

II, produces contraction of the efferent arteriole, and 

increases intraglomerular pressure, resulting in 

hyperfiltration and damage to the glomerular basement 

membrane (GBM) (14-18). 

Metabolic alterations: Hyperglycemia leads to increased 

glycolysis by stimulating the polyol and hexosamine 

pathways, formation of advanced glycation end products 

(AGEs), and activation of protein kinase C (PKC) (13, 15).
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Figure 2. Representative diagram of the nephron and the alterations that contribute to diabetic nephropathy. A.A.: 

afferent arteriole; E.A.: efferent arteriole; ET-1: endothelin 1; RAS: renin angiotensin system; AT-II: angiotensin II; 

IGF-1: insulin-like growth factor 1; NO: nitric oxide; VEFG: vascular endothelial growth factor; AGEs: advanced 

glycation end products; PKC: protein kinase C; SGLT-2: type 2 sodium-glucose co-transporter. 

 

AGEs cause cell damage by altering the function of 

laminin and type IV collagen, increasing the permeability of 

the GBM (6, 19-21). Additionally, they bind to 

proinflammatory receptors, which activate the production 

of interleukin (IL) 1 and 6, tumor necrosis factor alpha 

(TNF-α), transforming growth factor β1 (TGF-β1), vascular 

endothelial growth factor (VEGF), and reactive oxygen 

species (19, 22, 23). 

On the other hand, PKC contributes to DN by increasing 

levels of prostaglandin E2 and nitric oxide, leading to 

vasodilation of the afferent arteriole and enhances the action 

of angiotensin II in the efferent arteriole, favoring the 

development of glomerular hyperfiltration (24-26). Also, 

this stimulates the production of fibronectin and type IV 

collagen, resulting in thickening of the GBM (27). 

Hyperglycemia itself causes dilation of the afferent arteriole 

through the release of vasoactive mediators such as insulin-like 

growth factor 1, glucagon, VEGF and prostaglandins (28). 

Inflammatory changes: To sum up contributions to the 

development of DN, diabetic patients suffer chronic 

activation of innate immunity and a proinflammatory state 

(29). The nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) regulates the expression of genes 

related to inflammation and apoptosis (30). Hyperglycemia 

increases the NF-κB expression through activation of Toll-

like receptors (17, 31-33). In DN, NF-κB activation is 

associated with proteinuria and interstitial cell infiltrate (30, 

34, 35). 

Inflammatory cytokines such as TNF-α and IL 1, 6 and 

18 are expressed in higher amounts in kidneys of patients 

with DM. These cytokines correlate directly with the degree 

of albuminuria and possibly increase vascular endothelial 

cell permeability, contributing to glomerular 

hypercellularity and thickening of the GBM (36-39). 

Hyperglycemia increases the expression of the sodium-

glucose cotransporter 2 (SGLT-2), which, in contexts of 

DM, is counterproductive (40, 41). This causes 

hemodynamic and metabolic alterations, increasing sodium 

and glucose reabsorption, stimulating the macula densa of 

the distal tubule, causing dilation of the afferent arteriole by 

tubulo-glomerular feedback, and increasing further 

intraglomerular pressure (42-46). 

Diagnosis: 

Traditional biomarkers: 

Creatinine and estimated GFR: Serum creatinine is the 

most widely used biomarker to assess kidney function; it 

corresponds to the end-product of the creatine and creatine 

phosphate metabolism. Anyhow, creatinine measurement is 

prone to interferences, and inaccuracies due to 

physiological and technological aspects.  

Its association with muscle mass, tubular secretion, diet, 

and comorbidities such as advanced liver disease, cause its 

clinical limitations. So does extrarenal clearance of serum 

creatinine possibly due to intestinal bacteria, relevant in 

advanced CKD (47) The serum creatinine concentration 

starts to increase when approximately 40–50% of the kidney 

parenchyma is damaged (48, 49). This limits its use as a 

marker for the early diagnosis of CKD (50). Different 

formulas used to estimate the GFR based on serum 

creatinine level are widely used, but they lack of accuracy 
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since they do not measure direct renal tissue injury and have 

a low sensitivity to small changes in renal function (51-53). 

Additionally, there are differences in the estimation 

formulas of the GFR based on serum creatinine (eGFRcr), 

which limits, even more, its utility (54). 

Albuminuria: Albuminuria is a traditional biomarker for 

DN. Albumin is almost completely reabsorbed in the renal 

tubules. The urinary albumin-creatinine ratio (UACR) is the 

method of choice for detecting albuminuria using a simple 

urine sample. Albuminuria, defined as a urine albumin 

excretion equal to or greater than 30 mg/day, is considered 

a sign of glomerulo-tubulopathy, which correlates with 

renal structural changes (47). It is the strongest predictor of 

kidney disease and cardiovascular morbimortality (55, 56).  

However, prognostic by albuminuria is not specific for 

DN. Approximately 30% of patients with DN do not have 

albuminuria and therefore, eGFR is a better biomarker in the 

prediction of DN development and its progression (57-59). 

Studies show that patients with T2D without albuminuria 

have a high risk of renal dysfunction progression due to 

inflammatory mechanisms and lesions at the level of the 

proximal renal tubule, through alteration of 

tubuloglomerular feedback (60). The characterization of 

non-albuminuric forms of DN reinforces the importance of 

adding the estimated GFR to the measurement of 

albuminuria (59). GFR and albuminuria are independent 

predictors of the course of kidney disease and risk of 

mortality, and therefore both should be evaluated in 

screening for DN (61). 

Cystatin C: Cystatin C is a low molecular weight protein, 

which concentration correlates with GFR. Its superiority 

over other renal function markers is due to its ability to 

remain free of binding proteins to be filtered in the 

glomeruli and to be almost completely reabsorbed in the 

proximal convoluted tubule. It has less interindividual 

variation, as it is independent of muscle mass, gender, age, 

and inflammatory conditions (62).  

The estimation GFR based on serum Cystatin C 

(eGFRcys) has been suggested to show better clinical utility 

for detecting nephropathy in patients with 

normoalbuminuria, as well as predicting the progression of 

nephropathy in patients with albuminuria (63). Studies 

suggest that serum cystatin C could increase before 

creatinine in the presence or progression of DN, but its 

significance in DN is still on debate since there is no high-

grade evidence to recommend it as a screening method for 

DN (64-68). 

 Additionally, urinary excretion of Cystatin C is elevated 

early in diabetes and prediabetic nephropathy and it 

suggests tubular injury (55).  

New biomarkers: Current research is aiming to find more 

sensitive, specific, and precise biomarkers that allow the 

early detection of kidney damage, even before the 

appearance of microalbuminuria or a GFR decrease. New 

biomarkers initially found in acute kidney injury, are being 

studied to determine their value in the evaluation of CKD 

(51). According to the classification of sample origin, 

biomarkers are urinary or serum (table 1); meanwhile 

according to the site of injury, there are glomerular and 

tubular biomarkers (table 2). Pathophysiological 

mechanism classification considers renal dysfunction, 

inflammation, and oxidative stress biomarkers (55).

 

 

Table 1. Classification of new biomarkers according to sample origin 

Urinary biomarkers Serum biomarkers 

Alpha-1 microglobulin 

Ceruloplasmin 

Cyclophilin A 

IgG 

KIM-1 

MCP-1 

Megalin 

NGAL 

8-oxo-7,8-dihydro-2-deoxyguanosine 

TNF-alpha 

Transferrin 

Type IV collagen 

VDBP 

NGAL 

NT-proBNP 

TNFR1 and TNFR2 

Uric acid 

KIM-1: Kidney injury molecule 1; MCP-1: Monocyte chemoattractant protein-1; NGAL: 

neutrophil gelatinase-associated lipocalin; NT-proBNP: N-Terminal B-type natriuretic peptide 

prohormone; TNF-alpha: Tumor necrosis factor ALPHA; TNFR1: Tumor necrosis factor 1 

receptor; TNFR2: Tumor necrosis factor 2 receptor; VDBP: vitamin D binding protein. 
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Table 2. Classification of new biomarkers according to place of lesion 

Glomerular biomarkers Tubular biomarkers 

Ceruloplasmin 

IgG 

Transferrin 

Type IV collagen 

TNFR1 and TNFR2 

KIM-1 

NGAL 

Megalin 

Alpha-1 microglobulin 

VDBP 

KIM-1: Kidney injury molecule 1; NGAL: neutrophil gelatinase-associated 

lipocalin; TNFR1: Tumor necrosis factor 1 receptor; TNFR2: Tumor 

necrosis factor 2 receptor; VDBP: vitamin D binding protein. 

 

 

Tubular biomarkers: 

Neutrophil gelatinase-associated lipocalin (NGAL): 

NGAL is a low molecular weight glycoprotein, a 

constituent of neutrophil granules that also is expressed in 

the kidney. This protein is freely filtered by the glomerulus 

and reabsorbed in the proximal tubules. When epithelial 

tubular cells of the kidneys are acutely injured, there is a 

marked increase in urinary NGAL concentrations and might 

go with an increase in de novo synthesis of NGAL within 

the tubules (62, 69). 

Although an increase in urinary as well as serum NGAL 

has shown to be a reliable marker for the early diagnosis of 

acute kidney injury, its association with CKD progression 

remains controversial. It correlates inversely with GFR, but 

does not correlate with HbA1c. At the same time, T1D and 

T2D patients with normoalbuminuria can present elevated 

values of urinary NGAL, predicting albuminuria (65, 69). 

Its sensibility and specificity were reported to be 94% and 

90%, respectively (70). 

Kidney injury molecule 1 (KIM-1): KIM-1 is a 

glycoprotein found in the proximal tubules and is a sensitive 

marker of proximal tubular injury. Increased levels of KIM-

1 have been found in DM patients, independently of 

albuminuria. KIM-1 has been associated with DN 

progression (71). With a cut-off point of 32.00 ng/g and 

sensitivity 93.8% it’s reported sensibility and specificity are 

93.8% and 88.5%, respectively (72). 

Vitamin D binding protein (VDBP): VDBP is the main 

plasmatic transporter of vitamin D. It is vital in the 

biosynthesis of 1,25 dihydroxy-vitamin D within the renal 

proximal tubules, binding 25-hydroxy-vitamin D to VDBP 

and actively recovering the complex by endocytosis from 

the glomerular filtrate. Higher expression of VDBP was 

found in patients with DN, although the reasons remain 

unclear. It is suggested that high concentrations are 

associated with renal tubular damage as well low serum 

levels of vitamin D, which has also been found a factor 

associated with DN. This marker has a sensitivity of 98.8% 

and a specificity of 80%, for a cut-off point of 216 ng/mg 

(73). 

Megalin: Megalin is a multiligand receptor expressed in 

proximal tubular cells that reabsorbs filtered albumin and 

correlates cross-sectional with albuminuria (74). There are 

2 types of assays: A-megalin, which is elevated in patients 

with early DN and microalbuminuria (75), and C-megalin, 

which is associated with persistent microalbuminuria and 

useful specially in patients with low-normal UACR levels 

(74).  

Alpha-1 microglobulin: Urinary alpha-1 microglobulin is 

reabsorbed in the proximal tubule. It is an early biomarker 

of tubular injury that predicts microalbuminuria in T2D 

patients (76). 

Glomerular biomarkers: 

Transferrin: Transferrin is an iron-binding protein with 

low molecular weight and low ionic load that easily crosses 

the glomerular barrier (77). Urinary transferrin appears 

elevated prior to the development of microalbuminuria in 

patients with DM, suggesting that it may be an early 

biomarker of glomerular damage and could predict 

microalbuminuria (78, 79). 

Ceruloplasmin: Ceruloplasmin is a copper-carrying 

protein that crosses the glomerular barrier with difficulty 

due to its negative load. Elevated urine ceruloplasmin levels 

usually predict microalbuminuria in T2D patients with 

normoalbuminuria (78-80).  

IgG: Urinary IgG is a biomarker of glomerular damage that 

usually appears elevated along with transferrin and 

ceruloplasmin and predicts microalbuminuria in patients 

with DM (78, 79). 

Type IV Collagen: Type IV collagen is the principal 

component of the glomerular basement membrane and 

mesangial matrix and is present in podocytes and the 

proximal tubule. Hyperglycemia stimulates the synthesis of 

type IV collagen. Urinary type IV collagen is a structural 

damage biomarker and its level increases as DN progresses 

(81, 82). 
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Tumor necrosis factor 1 receptor (TNFR1) and Tumor 

necrosis factor 2 receptor (TNFR2): Elevated serum 

TNFR1 and TNFR2 concentrations are strong independent 

predictors of renal function decline leading to ESRD in 

patients with T2D. Elevated serum concentrations of 

TNFR1 or TNFR2 in T2D are associated with early 

glomerular structural lesions. These receptors showed the 

strongest associations with a reduced percentage of 

fenestrated endothelium (83). 

Inflammation biomarkers: 

Monocyte chemoattractant protein-1 (MCP-1): MCP-1 

is a proinflammatory cytokine that plays a role in the 

recruitment of macrophages and monocytes, being 

detectable in urine of patients with different kidney 

diseases. A significant increase in MCP-1 levels has been 

found in urine of T2D patients with macroalbuminuria. Its 

measurement would especially be useful to determine the 

prognosis of DN (84, 85). 

Tumor Necrosis Factor Alpha (TNF-α): TNF-α is a 

cytokine involved in systemic inflammation. It is produced 

primarily by activated macrophages. Urinary excretion of 

TNF-α is increased in T2D patients with microalbuminuria 

and macroalbuminuria compared to those without 

albuminuria (86). 

Biomarkers of oxidative stress: 

Urinary 8-oxo-7,8-dihydro-2-deoxyguanosine (8-

oHdG): Oxidative DNA damage causes the production of 

8-oHdG, which is eliminated in the urine and so considered 

a biomarker of oxidative stress. Higher levels of 8-oHdG in 

urine indicate significant progression of DN (82). 

Eventually, this biomarker might predict long-term 

mortality in DM (87). 

Other biomarkers: 

B-type natriuretic peptide prohormone (NT-proBNP): 

The BEAt-DKD consortium, which assessed biomarkers to 

predict the rate of estimated GFR reduction in the early 

stages of CKD in patients with DM, showed that NT-

proBNP predicts reduction of estimated GFR (88). 

Periostin: Periostin is a urinary biomarker with high 

diagnostic precision in DN. Periostin reaches a sensitivity 

of 98% and a specificity of 80%. It is useful for early 

detection of DN (89, 90). 

Cyclophilin A: Cyclophilin A is used as a urinary 

biomarker for early detection of DN. It has a high diagnostic 

precision in DN and registers a sensitivity of 84% and a 

specificity of 86% (89, 90). 

Uric acid: Serum uric acid is associated with insulin 

resistance and endothelial dysfunction. Uric acid increases 

in chronic kidney disease and is associated with GFR 

reduction. 

Also, it predicts microalbuminuria in T1D patients, being an 

early biomarker of DN (91, 92). 

Proteomic: Proteomics is the large-scale study of proteins, 

which allows the identification and quantification of 

hundreds of proteins or peptides, and their variation under 

conditions of health or illness (93). In recent years, 

proteomics has become a promising method for identifying 

a wide variety of kidney disease biomarkers in urine, which 

is easily accessible, a very stable medium for proteins, and 

non-invasive for the patient (94). 

The PRIORITY trial (Proteomic Prediction and Renin 

Angiotensin Aldosterone System Inhibition Prevention of 

Early Diabetic Nephropathy in Type 2 Diabetic Patients 

with Normoalbuminuria) confirmed that the test assessing a 

panel of 273 proteins and peptides using mass spectrometry, 

known as CKD273 (CKD classifier 273), is useful in the 

determination of the risk for DN progression (95). 

MicroRNA: MicroRNAs are relatively stable particles and 

can be measured in serum, plasma, urine, and saliva by 

polymerase chain reaction, microarrays, RNA sequencing, 

and in situ hybridization. The microRNAs miR-192-5p and 

miR-130b have been identified and could be useful in the 

early detection, monitoring, and treatment efficacy of CKD 

(96). 

Lipidomics analysis: Lipidomics is the large-scale study of 

pathways and networks of lipids. Alterations in 

lysophosphatidylethanolamine, phosphatidylethanolamine 

and triacylglycerol may be associated with alterations in the 

lipid metabolism in DN and the severity of the development 

of nephropathy, being able to identify early from advanced 

damage (97). 

Conclusion: DN results in multiple alterations at 

glomerular and tubulo-interstitial level caused by 

hyperglycemia, hemodynamic factors, oxidative stress, and 

underlying chronic inflammation. These alterations can be 

detected earlier by the novel biomarkers, allowing timely 

diagnosis and treatment, to stop or slow down glomerular 

and tubular damage, thus reducing morbidity and mortality 

and so, maintaining a better quality of life for the patient, 

and reducing health system costs.  
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